Combatting Congestion: Strategies to Reduce Emissions, Address Safety and Improve Driver Morale

For those of us who drive in the Mid-Atlantic region, it will not be surprising to learn that Washington, DC ranks third, behind New York and Los Angeles, for overall traffic congestion. Worse, the stretch of southbound Interstate 95 from the Fairfax County Parkway to Fredericksburg has the dubious honor of being the single worst traffic hotspot in the country compared to 100,000 hotspots in 25 cities. The INRIX US Traffic Hotspot Study 2017 found 1,394 traffic jams on this stretch during a two-month period, resulting in average delays of 33 minutes and covering over six miles.

Massive construction projects are often undertaken to address this kind of congestion. The recently completed Elizabeth River Tunnels Project is a billion dollar public-private partnership intended to alleviate congestion in the Hampton Roads area in Virginia. The comprehensive agreement between Elizabeth River Crossing (ERC) OpCo LLC and the Virginia Department of Transportation (VDOT) encompasses the rehabilitation of two existing tunnels and the construction of a new tunnel and an expressway. By relieving choke points and improving traffic movement, the project is expected to reduce average round trip savings by 30 minutes per day, reduce gas emissions and fuel consumption, and create regional economic benefits estimated at $170 to $254 million.

The Maryland Department of Transportation is in the midst of a modern light rail project, the Purple Line, to run 16.2 miles between Bethesda in Montgomery County and New Carrollton in Prince George’s County. With conceptual and preliminary planning started in 2009 and actual construction begun in 2016, the project is scheduled for completion in 2022, including one tunnel, a number of trails and 21 stations. The light rail electrically-powered vehicles will use existing roadways and pedestrian-friendly neighborhood stations. Projections suggest daily ridership will reach 74,000 by 2040 and that 17,000 cars will be taken off roads every day, saving 1 million gallons of gas annually.

The willingness of governments and transportation agencies to undertake these complex and expensive infrastructure projects is indicative of the congestion ‘crisis’ experienced by millions and the policy dilemmas faced by public funders trying to address the issues.

The federal government acknowledges the urgency of addressing these long-term transportation challenges, passing the Fixing America’s Surface Transportation (FAST) Act in 2015. Appropriating billions of dollars for highway improvements, the Act challenges state and local governments to move forward with critical transportation projects, recognizing the ripple effect of congestion on freight movement, infrastructure degradation, environmental impacts, pedestrian and traffic safety, adoption of smart technologies and economic development.

Beyond incurring tremendous expenses to build wider highways, new tunnels and bridges, and extensive mass transit systems, are there other less-costly and environmentally sustainable approaches to alleviate traffic congestion?

Researchers in the Mid-Atlantic region are already tackling these issues, investigating congestion through multiple strategies such as infrastructure investment, public transportation, connected and automatic vehicles and land use management. With MATS UTC funding, they are pursuing collaborative, multi-disciplinary, creative approaches to study and relieve congestion. Examples include:

Quantifying the Impact of On-Street Parking Information on Congestion Mitigation

A team of researchers from Virginia Tech and Morgan State University is seeking to reduce congestion by providing drivers with real-time information about available parking spaces. Using a Morgan State University simulation of Washington, DC’s Chinatown with 1300 metered spaces and 30 loading zones as well as Virginia Tech’s smart road, the team is studying how the availability of parking information impacts driving behavior.

LiDAR for Air Quality Measurement

Using state-of-the-art light detection and ranging (LiDAR) technology at Old Dominion University, researchers are taking an innovative approach to addressing air quality and pollution levels in relation to traffic patterns at specific congested choke points in the Hampton Roads area. They hope to validate this new approach as a way to correlate traffic flow with emissions, giving public health and policy agencies better information upon which to make traffic management and land usage decisions.

Bicycle and Pedestrian Traffic Count Program to Estimate Performance Measures on Streets and Sidewalks in Blacksburg, VA

University of Virginia and Virginia Tech researchers developed a bicycle and pedestrian traffic count program as a tool to understand the impact of pedestrians and bikes on the entire transportation network as well as on specific trails and corridors. They hope to develop a non-motorized land use model on a national scale.

Connected Vehicle Technologies for Efficient Urban Transportation

Researchers at the University of Delaware and Morgan State University are interested in using connected vehicle technology to optimize a vehicle’s control system in real-time to reduce congestion, improve fuel economy and reduce emissions. Using hybrid buses operating at the University of Delaware, the team is studying how intelligently integrated components can respond to both routine and atypical traffic situations, resulting in optimized traffic control and vehicle fuel economy.

Multi-City Direct-Demand Models of Peak Period Bicycle and Pedestrian Traffic

Virginia Tech researchers are studying the shift to non-motorized modes, such as cycling and walking, as commuters and other travellers adopt alternative options to congested roadways. Their research seeks to provide better spatial estimates of walking and cycling traffic as an input to assess exposure to hazards, evaluate infrastructure investments, or locate facilities. Their direct-demand models are intended to provide generalizable results related to the built environment around non-motorized traffic.

Environmental and Safety Attributes of Electric Vehicle Ownership and Commuting Behavior

Researchers at Morgan State University are studying attitudes toward electric vehicle (EV) use as well as the differences in commuting behavior between EV and conventional vehicle owners. The results may dictate new approaches for making public policy and transportation planning decisions related to EV promotion and subsidies, infrastructure related to charging stations and statewide traffic models.

Performance Measures for Freight Transport and General Traffic: Investigating Similarities and Differences Using Alternative Data SourcesResearchers at Old Dominion University are using three probe data sources to investigate the correlation between freight and general traffic travel times in the Hampton roads area. Such research can help to determine if a congestion relief program for a given bottleneck could benefit both freight and general-use traffic and, ultimately, provide DOTs with tools to ensure efficient movement of freight along heavily-used highway systems.

Traffic congestion, whether it occurs in major metropolitan areas or even in smaller cities, suburban areas or rural settings, has a negative effect on quality of life, environmental impacts, economic prosperity, and regional competitiveness. Research efforts that examine forward-thinking transportation strategies represent the next wave of fighting congestion with practical, cost-effective solutions.